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Current plans for supporting Voyager’s encounter at Neptune include the arraying of  
the DSN antennas at Goldstone, California, with the National Radio Astronomy Observa- 
toly ’s Vely Large Array (VLA) in New Mexico. Not designed as a communications antenna, 
the VLA ’s signal transmission facility suffers a disadvantage in that the received signal is 
subjected to a ‘kap” or blackout period of approximately 1.6 msec once every 5/96 sec 
control cycle. 

Previous analyses showed that the VLA data gaps could cause disastrous perfonnance 
degradation in a VLA stand-alone system and modest degradation when the VLA is 
arrayed equally with Goldstone. These basic conclusions were independent of whether 
Voyager was using its convolutional code alone or the convolutional code concatenated 
with its Reed-Solomon outer code. 

New analysis indicates that the earlier predictions for concatenated code performance 
were overly pessimistic for most combinations of  system parameters, including those of  
Voyager-VLA. The periodicity of the VLA gap cycle tends to guarantee that all Reed- 
Solomon codewords will receive an average share of erroneous symbols from the gaps. 
The number of gapped symbols is not subject to the same kind of statistical fluctuations 
that govern the ordinaly random errors the code must also overcome. However, large 
deterministic fluctuations in the number of gapped symbols from codeword to codeword 
may occur for certain combinations of  code parameters, gap cycle parameters, and data 
rates. In this article, several mechanisms for causing these jluctuations are identified and 
analyzed. 

Fortunately, the Voyager-VLA parameters do not produce wild fluctuations in the 
number of gapped symbols from codeword to codeword. The result is graceful degrada- 
tion of concatenated code performance due to the VLA gaps, even for a VLA stand- 
alone system. The magnitude of the deterioration at a constant concatenated code bit 
error rate of  is 0.5 dB to 0.6 dB for a VLA stand-alone system and 0.3 dB to 0.4 dB 
for the VLA arrayed equally with Goldstone. 

Even though graceful degradation is predicted for the Voyager- VLA parameters, cata- 
strophic degradation greater than 2 dB can occur for a VLA stand-alone system at certain 
non-Voyager data rates inside the range of the actual Voyager rates. Thus, it is imperative 
that all of  the Voyager- VLA parameters be very accurately known andprecisely controlled. 
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1. Introduction 
Current plans [ 11 for supporting Voyager’s encounter at 

Neptune include the arraying of the DSN antennas at Goldstone, 
California, with the National Radio Astronomy Observatory’s 
Very Large Array (VLA) in New Mexico. The fully arrayed 
VLA operating in a stand-alone mode potentially provides 
about the same receiving capability as the Goldstone complex. 
The VLA arrayed with Goldstone would seem to offer up to  
two times greater data rates than Goldstone alone. 

Not designed as a communications antenna, the VLA’s 
signal transmission facility unfortunately suffers a disadvan- 
tage in that the received signal is subjected to  a “gap” or 
blackout period of approximately 1.6 msec once every control 
cycle. During the blackout period, the received signal is not 
transmitted from the antennas to  the processing facility. The 
control cycle is 5/96 sec (approximately 52 msec), so the 
blackout period constitutes about 3% of the total receiving 
time. 

If the VLA were used in a stand-alone mode to receive 
uncoded data, the data received during the gaps would be 
irretrievably lost. The resulting bit error rate, averaged over 
gapped and ungapped periods, could be no better than about 
l S % ,  even if no errors occurred outside the gaps. Arraying the 
VLA with Goldstone provides some capability during the 
gapped periods, but the overall error rate is still at least 3% of 
the error rate that would prevail based on the Goldstone-only 
aperture without any assistance from the VLA. 

The high raw error rates during the gaps can potentially be 
overcome by coding the data. All of Voyager’s telemetry data 
is convolutionally encoded, and the memory and error correc- 
tion capability of the convolutional code provides a mecha- 
nism for bridging small gaps in the data. Unfortunately, the 
convolutional code’s correction capability is limited to  approx- 
imately the memory length of the code, and the VLA gaps are 
longer than the Voyager code’s memory length (6 bits) for 
data rates greater than 3.75 kbits/sec. 

Voyager’s compressed imaging data is Reed-Solomon en- 
coded in addition to being convolutionally encoded. Each 
Reed-Solomon codeword consists of 255 eight-bit symbols, 
and blocks of four codewords are interleaved symbol by sym- 
bol. Thus, more than 8000 data bits are transmitted between 
the beginning and end of a codeword. At Voyager-Neptune 
data rates of 21.6 kbits/sec or lower, each Reed-Solomon 
codeword is decoded based on symbols accumulated over a 
minimum of seven or eight complete gap cycles, so the Reed- 
Solomon decoder tends to see an average mix of gapped and 
ungapped symbols. Since Voyager’s Reed-Solomon code can 
correct about 6% erroneous symbols, the code can potentially 

withstand 3% gapped symbols with a reserve error correction 
capability of 3% to handle normal ungapped symbol errors. 

II. Previous Analysis 
The general conclusions based on the simple reasoning in 

Section I are largely valid, but more detailed analysis is neces- 
sary to quantify the deleterious effects of the data gaps and 
to detect anomalous situations when the “average” behavior 
is not a valid determinant of overall performance. An analysis 
of the effects of the VLA data gaps on Voyager’s convolu- 
tionally coded and concatenated coded data was reported 
years ago [ 2 ] ,  [3] when the possible use of the VLA for 
Voyager was first foreseen. The earlier analysis first examined 
the effects of the data gaps on convolutionally coded data via 
a full software simulation of the Viterbi decoder that accu- 
rately modeled the VLA gap cycle. Then the average Viterbi 
decoder error rates predicted by the simulation were used as 
the basis for a theoretical calculation of the performance of 
the convolutional/Reed-Solomon concatenated code. 

The intuitive conclusions about the performance of a 
stand-alone VLA receiving convolutionally coded data were 
borne out by the simulations. As shown in Fig. 4 of [3] ,  the 
decoded error rate decreases slowly as a function of signal-to- 
noise ratio and then flattens out at an unacceptable value 
around 1%. The exact limiting error rate is a function of the 
data rate and the duty cycle of the gap period, and it approaches 
1.5% for high data rates and the VLA duty cycle of 3% gaps. 
When the VLA is arrayed equally with Goldstone, so that the 
overall signal-to-noise ratio drops by only 3 dB during the 
gaps, the error rate curve retains its usual character and does not 
approach a saturation value over the interesting range of error 
rates. 

The earlier theoretical calculations of the Reed-Solomon 
code’s performance in Fig. 9 of [3] show the same leveling off 
of error rate as a function of signal-to-noise ratio when the 
VLA is unassisted by Goldstone. This implies unacceptable 
performance for a VLA stand-alone system, no matter how 
high the signal-to-noise ratio at the VLA. The Reed-Solomon 
performance deterioration when the VLA’s signal is augmented 
by an equal signal from Goldstone is not so dramatic, as the 
error rate curves again retain their usual character but drop off 
more slowly. 

The earlier analysis reached sharply different conclusions 
about VLA performance with and without assistance from 
Goldstone. Because of the predicted potential for devastating 
degradation, the causes of which were not fully understood, 
the VLA gap analysis was reopened in order to  pin down the 
precise error mechanisms before Voyager’s Neptune encounter 
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next year. It was not possible to  improve on the earlier anal- 
ysis of the convolutional code’s performance, because the 
simulation accurately modeled both the Viterbi decoder and 
the V U  gap cycle. However, a somewhat more detailed 
analysis of the Reed-Solomon code’s performance was under- 
taken, and this new analysis is reported here. 

The new analysis of the performance of concatenated 
coding yields less pessimistic conclusions about the effect of 
the data gaps in a VLA stand-alone system. The regularity of 
the gap cycle helps to eliminate the possibility of larger than 
average numbers of errors due to  the gaps. On the average, the 
Reed-Solomon code’s error correction capability can take 
care of errors during the gaps, and this average behavior is 
overwhelmingly likely to occur for most combinations of 
system parameters. On the other hand, the new analysis re- 
veals that certain combinations of parameters are taboo if the 
type of ruinous degradation predicted by the old analysis is 
to be avoided. 

111. Various Possible Analytical Approaches 
There are several possible approaches to calculating the 

theoretical performance of the Reed-Solomon code in the 
presence of data gaps. Three such approaches are shown in 
Fig. 1. The simplest such approach, called the one-level model, 
was the approach used in the earlier analysis. The most com- 
plex and accurate approach, the simulated error stream model, 
is not feasible. The middle approach, the two-level model, is 
the one taken in the current analysis. 

The single-level model is based on the following expression 
(cf. Eq. 2 of [2]) for calculating the concatenated code’s bit 
error probability: 

N 

p ,  = P  n ; (!) n i ( 1  - n y i  (1) 
i=E+ 1 

Equation (1) expresses the bit error probability Pb of the con- 
catenated channel in terms of the bit error rate p and the 
Reed-Solomon symbol error rate n of the output from the 
Viterbi decoder. This expression assumes an (N, N - 2E) 
Reed-Solomon code, which can correct up to  E symbol errors 
per N-symbol codeword. In [2] and [3] ,  the average error 
probabilities p and n characterizing the Viterbi decoder output 
were obtained by means of a detailed simulation of the Viterbi 
decoding process, including an accurate model of the signal-to- 
noise ratio fluctuations over the VLA gap cycle. The model 
based on Eq. (1) is termed the “single-level’’ model, because 
the Reed-Solomon error probability is calculated using single 
overall average values of p and n to characterize the Viterbi 

decoder behavior, without regard to deterministic fluctuations 
in p and n between the gapped and ungapped portions of a gap 
cycle. 

The validity of Eq. (1) rests on the assumptions that suc- 
cessive Reed-Solomon symbol errors are independent and 
identically distributed. As stated in [2], independence of sym- 
bol errors is a good assumption for Voyager because Voyager’s 
8-bit Reed-Solomon symbols are interleaved to depth 4 and 
Viterbi decoder error bursts of 32 or more bits are highly 
unlikely for the (7, 1/2) convolutional code. On the other 
hand, the assumption of identically distributed symbol errors 
throughout a Reed-Solomon codeword should be altered to 
account for the deterministic periodicity of the gap cycles. 
Symbols occurring during the gaps have ri higher error rate 
than symbols occurring outside the gaps. 

Ideally, a set of N values of p and n should be calculated 
from the Viterbi decoder simulation for each possible starting 
“phase” of the gap cycle relative to the Reed-Solomon code- 
word boundaries. Equation (1) can be easily modified to allow 
the values of p and 71 to vary symbol by symbol throughout 
the codeword. The error rate calculated from this “multilevel” 
model can then be averaged over all possible relative phases of 
the gap cycle to  obtain the overall average bit error rate. 

The analysis in the present article is not based on this gen- 
eral multilevel model for the Viterbi decoder’s output statistics. 
Rather, it assumes that two levels will suffice: one set of values 
for p and n during the ungapped portion of the gap cycle and 
another set of values during the gaps. Intuitively, the two-level 
model should become exact in the limit of very high data 
rates, as the widths of both the gapped and ungapped periods 
become long with respect to the memory length of the convo- 
lutional code. In this limit, the Viterbi decoder has a chance 
to settle into steady-state values of p and n both inside and 
outside the gaps, and the number of “transition” bits and sym- 
bols characterized by intermediate values of p and n is small 
relative to  the number of bits and symbols characterized by 
the steady-state gapped and ungapped values. 

Another form of the multilevel model consists of dispens- 
ing with the theoretical calculations altogether and instead 
feeding the simulated output of the Viterbi decoder directly 
into a simulation of the Reed-Solomon code’s performance. 
Tests of this type are impractical because of the monumental 
amount of simulated data that must be collected before 
statistical confidence in the results can be obtained. For 
example, at an operating point of Reed-Solomon code- 
word error probability (corresponding to a concatenated 
code bit error probability of about 3 X the average 
waiting time for each erroneous codeword is about 2 0  million 
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bits. Simulating enough Viterbi decoded data to produce a 
statistically valid sample of erroneous codewords was not 
feasible. However, similar end-to-end tests of the gapped VLA 
data have been performed using real test data from CTA-21.’ 

IV. Details of the Two-Level Model 
At Voyager’s data rates, the length of the ungapped portion 

of each gap cycle is several hundred to  more than a thousand 
bits long, so the steady-state assumption on which the two- 
level model is based appears justified for the ungapped zone. 
The length of the gaps, however, is at most around 35 bits (or 
about 6 memory lengths of the convolutional code) at Voy- 
ager’s highest data rate of 21.6 kbits/sec. Thus the accuracy of 
the two-level model is somewhat questionable for the gapped 
zone. However, it should still give a better prediction of con- 
catenated code performance than the single-level model. 

The two-level model used in this article is a model for the 
decoded output of the Viterbi decoder. The Viterbi output 
bit error rate is allowed to  vary between two levels. The two 
corresponding types of errors are referred to  as “gapped” 
errors and “ungapped” errors, respectively. Each Viterbi de- 
coded bit is characterized by one of two bit error probabili- 
ties p o  or pr , and each Reed-Solomon symbol is characterized 
by one of two symbol error probabilities no or n,. Gapped 
bits and symbols have error probabilities p o  and no, and un- 
gapped bits and symbols have error probabilities p ,  and nl. 

The ungapped error probabilities p ,  and n, are assumed to 
be the steady-state Viterbi decoder output error probabilities 
for a decoder operating at the ungapped signal-to-noise ratio 
E b / N o ,  and the gapped error probabilities p o  and no are as- 
sumed to be the corresponding error probabilities for a decoder 
operating at the reduced signal-to-noise ratio inside the gap. 
The signal-to-noise ratio inside the gap is zero for the VLA 
stand-alone system, and for the VLA arrayed with Goldstone 
it is reduced from the signal-to-noise ratio outside the gap by 
an amount reflecting the array ratio. For equal contributions 
from the VLA and Goldstone, the signal-to-noise ratio reduc- 
tion inside the gaps is 3 dB. Other array ratios considered in 
this article correspond to gap reductions of 1.5 dB and 5 dB. 

A summary of the two-level model for the cases of a VLA 
stand-alone system and the VLA arrayed with Goldstone is 

‘M. Varuna, “VLA Standalone Test Results for 3.6 KBPS and 7.2 KBPS 
Voyager Telemetry Data Rates,” Interoffice Memorandum Voyager- 
GDSE-87-056, Jet Propulsion Laboratory, Pasadena, California, 
September 16, 1987. 

shown in Table 1. Performance curves showing the relation- 
ship between the bit and symbol error probabilities and the 
signal-to-noise ratio for the Voyager code parameters are 
shown in Fig. 22. The curves in this figure are taken from 
Fig. 3-l(a) of [4], together with the results of some new 
simulations of the Voyager code for signal-to-noise ratios 
Eb/No near 0 dB or lower. The Viterbi decoder’s performance 
in this normally uninteresting range of E,/No is relevant for 
the VLA gap analysis, because signal-to-noise ratios inside the 
gap can be 0 dB or lower whenever signal-to-noise ratios out- 
side the gap are near the normal operating point of the decoder. 

The classification of bits and symbols as “gapped” or “un- 
gapped” is not very precise. To account for the error correc- 
tion capability of the Viterbi decoder, some of the bits decoded 
during the gap period should be considered to  be effectively 
the same as ungapped bits. By an argument presented in [2] ,  
the Viterbi decoder can correct exactly K - 1 of the gapped 
bits when the signal-to-noise ratio is zero inside the gaps and 
infinite outside the gaps. Here, K is the constraint length and 
K - 1 is the memory length of the convolutional code (K = 7 
for the Voyager code). In this limiting case, the effect of the 
convolutional code is equivalent to  converting K - 1 gapped 
bits (characterized by the signal-to-noise ratio inside the gap) 
into K - 1 ungapped bits (characterized by the signal-to-noise 
ratio outside the gap). In this article, it is assumed that the 
convolutional code effectively accomplishes this same conver- 
sion of K -  1 gapped bits into K -  1 ungapped bits, even 
though the signal-to-noise ratios of interest are not exactly 
zero inside the gaps or infinite outside the gaps. 

Blocks of J consecutive bits are grouped to form symbols 
for the Reed-Solomon code (J = 8 for the Voyager code). A 
J-bit Reed-Solomon symbol is in error if any one of its bits is 
incorrect. Therefore, it is appropriate to classify a Reed- 
Solomon symbol as a gapped symbol if at least one of i t s J  
component bits is a gapped bit. Because one gapped bit can 
cause a whole J-bit symbol to be classified as a gapped symbol, 
a block of consecutive gapped bits is effectively lengthened by 
an average of J -  1 bits for the purpose of calculating the 
number of gapped symbols. In other words, a block of B con- 
secutive gapped bits corresponds, on the average, to (B tJ- 1)/J 
gapped symbols. This effect will be analyzed more closely in 
Section VII. 

2The Viterbi decoder error probabilities in Fig. 2 are plotted versus 
the signal-to-noise ratio Eb/No for the convolutional code only. In 
this figure, E ,  represents the signal energy per convolutionally en- 
coded bit. In Figs. 3 through 6 and 14 through 19, which show con- 
catenated code error probabilities, the EblNo axis represents the 
signal-to-noise ratio for the concatenated system, Le., E b  is the signal 
energy per Reed-Solomon encoded information bit. 
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The actual length of the gaps is effectively reduced by 
about K - 1 bits due to the error correction capability of the 
Viterbi decoder, but then increased by an average of J - 1 bits 
by the ability of one bad bit to knock out an entire symbol. 
The net adjustment, J -  K ,  equals just one bit for the Voyager 
code parameters ( J =  8, K = 7), so any reasoning based on the 
physical gap length rather than the effective gap length is 
probably valid for the Voyager case. However, the model used 
in this article will keep track of these two compensating effects 
separately, so it can be applicable to combinations of K a n d J  
which might not cancel each other so neatly. 

Since the two-level model is a model for the Viterbi decoder 
output statistics, it can be tested against the results of the de- 
tailed simulations conducted in [ 2 ]  and [ 3 ] .  The test can 
check whether the overall Viterbi decoder error statistics 
(averaged over gapped and ungapped periods) predicted from 
the simulations match the average of the two levels of statis- 
tics used in the two-level model. The test cannot directly 
check whether the two-level model is adequate for the pur- 
poses of calculating concatenated code performance, since 
detailed Reed-Solomon code performance simulations coupled 
with the Viterbi decoder simulations are not available as a 
benchmark. A corroboration of the two-level model at the 
level of the Viterbi decoded output is reported in the Appendix. 

V. Code Parameters, Gap Cycle Parameters, 
and Data Rates 

In order to apply the two-level model to the calculation of 
the effects of the VLA gaps on concatenated code error rates, 
several additional parameters need to be defined. The con- 
straint length K or memory length K - 1 of the convolutional 
code and the symbol size J of the Reed-Solomon code’s sym- 
bols have already been discussed in the description of the basic 
model. Other code parameters that affect the concatenated 
code performance are the Reed-Solomon code’s word length 
N ,  its error correction capability E ,  and its interleaving depth 
I .  Essential parameters of the VLA gap cycle are the gap length 
G and the total length of the gap cycle T.  The final parameter 
that influences the model’s prediction of concatenated code 
performance is the data rate R .  In this article, R is defined as 
the Viterbi decoder output bit rate. The corresponding chan- 
nel symbol rate is 2R for Voyager’s rate 1/2 convolutional 
code. The redundant nondata bits inserted by the Reed- 
Solomon code are counted toward the data rate R as defined 
here. 

Table 2 lists the values of these essential parameters for the 
Voyager-VLA configuration. 

VI. Conditional Concatenated Code Error 
Probabilities 

The Reed-Solomon decoder error probability depends on 
the two symbol error probabilities no, n l ,  and also on the 
number of symbols of both types within a Reed-Solomon 
codeword. Let no denote the number of “gapped” symbols 
with error probability no, and n, the number of “ungapped” 
symbols with error probability n ,  . The total Reed-Solomon 
word length is N =  no t nl. The number of gapped symbols 
no depends on the data rate R ,  the gap length G and gap 
period T ,  the Reed-Solomon symbol length J and codeword 
length N ,  the convolutional code constraint length K ,  and the 
“phase” of the gap cycle relative to the Reed-Solomon code- 
word boundaries. 

The symbol error probability for the output of the Reed- 
Solomon decoder can be evaluated from a generalization of 
Eq. (1) that accounts for the two input symbol error proba- 
bility levels. The answer also depends on whether it is evalu- 
ated for a gapped symbol or an ungapped symbol. If P,, and 
P,, denote the output gapped and ungapped symbol error 
probabilities, respectively, then 

0 4 j < n l  

f + j > E  

= 4 (p) n n; (1 -no)nO-i ( n jn; (1 - 7 T p - j  

O G i 4 n o  
4 1 

(3) 

The corresponding output bit error probabilities P,, and P ,  
are obtained by multiplying these expressions by the condi- 
tional probability of a bit error, given a symbol error, 

PO 
=0 

‘bo = -  ‘SO (4) 

where p o  and p ,  are the Viterbi decoder output bit error 
probabilities for gapped and ungapped bits, respectively. 

The overall average symbol and bit error rates P, and P, 
output from the Reed-Solomon decoder are obtained by aver- 
aging the expressions for P,,, P,, and P,, ,  P , ,  over the no 
gapped symbols and the n, ungapped symbols. 
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n l  p = - p  +-p 
s N SO N sl 

n l  P = - P  +-p b N bO N b l  

ratio and totally random steady-state Viterbi decoded bits. 
The gapped bit and symbol error probabilities are p o  = 1/2 and 
no = (2J - I)/2J, where J is the number of bits comprising a 
symbol. Since J = 8 for the Voyager Reed-Solomon code, a 

(7) good simplifying approximation is no = 1 .  Substituting 
no = 1 into Eqs. (2) and (3) leads to 

(6) 

The bit and symbol error probability formulas given in 
Eqs. (2) through (7) can be regarded as expressions for the 
conditional bit error probability, given knowledge of the num- 
ber of gapped symbols no in a codeword. The computation of 
this conditional error probability is a convenient intermediate 
step toward the eventual computation of the unconditional 
error probability, because it separates the performance evalua- 
tion into two reasonably distinct parts. The first part shows 
how sensitive the performance is to  variations in the number 
of gapped symbols per codeword, but it can be analyzed with- 
out reference to any peculiarities of the gapping mechanism 
which might cause the number of gapped symbols to vary 
from codeword to codeword. The evaluation of the condi- 
tional bit error probability can be performed independently 
of many of the parameters in the problem, including the data 
rate R, the gap length G ,  the gap cycle T,  and the code’s 
interleaving depth I .  The second step in the overall perfor- 
mance evaluation is to evaluate the interplay of these remain- 
ing parameters in determining the critical number of gapped 
symbols per codeword. 

This separability of the overall problem, with just one 
crucial parameter serving to link the two parts of the analysis, 
is a big advantage in favor of the two-level model relative to 
multilevel models or a full-scale combined simulation of the 
Viterbi decoder and Reed-Solomon performance. Whatever 
exactness the simpler two-level model might lack relative to 
multilevel models is compensated by increased insight into what 
effect each of the parameters has on the overall performance. 

Figures 3 through 6 show the evaluation of the Reed- 
Solomon conditional bit error probability for various values of 
the parameter n o .  Figure 3 shows the performance curves for 
a stand-alone VLA system, and the next three figures apply to 
a VLA-Goldstone array with varying contributions from each 
component of the array. The curves in each figure were evalu- 
ated using values of gapped and ungapped bit and symbol 
error probabilities, p o ,  no, p l ,  nl, obtained from the baseline 
steady-state Viterbi decoder performance curves in Fig. 2. The 
Reed-Solomon code parameters N and E were fixed at the 
Voyager code’s characteristics,N = 255 and E = 16. 

It is instructive to examine the curves for the VLA stand- 
alone case. When the VLA is unassisted by Goldstone, the 
received data signals are totally lost during the time of the 
VLA gap. A total gap is characterized by zero signal-to-noise 

N - n  

(8) 
N - n  - j  n; (1 -nl) 0 

] = E - n  + 1  0 

N -n 

j = E - n  + 1  
4 1 

0 

(9) 

as long as no is not greater than E.  The error probability for- 
mula of Eq. (9) for the ungapped symbols is the same equation 
as for the symbol error probability under a one-level model for 
a code of blocklength N -- no capable of correcting E - no 
errors. Thus, the effect of a total gap on the ungapped symbols 
is simply to  use up some of the error-correcting capability of 
the Reed-Solomon code. The performance degradation in the 
ungapped zone due to the gap is equivalent to the degradation 
that would result from substituting a less powerful code. 
Figure 3 effectively shows how well a series of less and less 
powerful codes performs relative to the baseline performance 
of the Voyager code (corresponding to the curve in Fig. 3 
labeled no = 0). The performance curves deteriorate very rapidly 
as no approaches 16, which represents a blocklength 239 code 
with no error correction capability. Values of no greater than 
16 would completely overwhelm the code. 

The notion of an “equivalent” reduced-redundancy code 
for determining performance in the case of a total gap is useful 
but not completely accurate. The concatenated code’s overall 
error statistics depend on the statistics for both ungapped sym- 
bols and gapped symbols. The error probability formula of 
Eq. (8) for gapped symbols equals the “equivalent” reduced- 
redundancy code’s word error probability, which is greater 
than its symbol error probability. Thus, the performance 
degradation in the gapped zone due to  the gap is worse than 
the degradation resulting from substituting the less powerful 
code. The overall average symbol error probability Ps is ob- 
tained by averaging the results of Eqs. (8) and (9) over gapped 
and ungapped symbols, as in Eq. (6), and hence is somewhat 
higher than the symbol error probability of the intuitively 
“equivalent” reduced-redundancy code. A similar conclusion 
holds for the overall average concatenated code bit error 
probability Pb, obtained from Eqs. (8) and (9) via Eqs. (4), 
(9, and (7). 
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VII. The Number of Gapped Symbols per 
Codeword 

The number of bits decoded by the Viterbi decoder during 
each gap period is RG. The total number of Viterbi decoded 
bits in an entire gap cycle is RT.  This corresponds to  RG/r 
channel symbols that are received during gaps, out of RT/r 
channel symbols received every gap cycle if the convolutional 
code’s rate is r (r = 1/2 for the Voyager code). Under the 
two-level model, approximately K - 1 (the memory length of 
the convolutional code) of the decoded bits during the gap 
period can be treated as having the same signal-to-noise ratio as 
ungapped bits. Thus, the effective length of each gap is reduced 
from RG bits to approximately RG - K t 1 bits due to  the 
correction capability of the Viterbi decoder. On the other 
hand, the gap period is effectively lengthened by J - 1 bits, on 
the average, due to  the ability of just one incorrect bit to  cor- 
rupt an entire J-bit Reed-Solomon symbol. Thus, under the 
two-level model, the average number of gapped symbols in 
each N-symbol codeword is N(RG - K t Jl /RT.  This works 
out to  an average of about eight gapped symbols per 255- 
symbol codeword for the Voyager-VLA parameters listed in 
Table 2 .  

The periodicity of the gap cycle tends to guarantee that 
every Reed-Solomon codeword receives an average number of 
gapped symbols. However, there are certain conditions under 
which this conclusion is invalid. Some codewords can get more 
than their share of gapped symbols, while other codewords 
receive fewer. The codewords receiving too many gapped 
symbols are drastically more prone to  error, as indicated by 
the rapid deterioration in the performance curves in Figs. 3 
to 6 as the number of gapped symbols no is increased. Thus, 
a small number of such atypical codewords can dominate the 
overall error performance of the concatenated code. 

A. Fluctuations Due to Symbol Edge Effects 

One basic mechanism causing an uneven distribution of 
gapped symbols per codeword is the symbol edge effects that 
on the average lengthen the effective gap by J - 1 bits. The 
actual lengthening of the gap can vary from 0 bits to 21 - 2 
bits, depending on the “phase” of the gap edges relative to 
symbol boundaries. Figure 7 shows that. each gap is length- 
ened by exactly (@l t G2) bits, where and @2 are the 
phases of the left and right edges of the effective gap relative 
to Reed-Solomon symbol boundaries. Both of these phases 
are uniformly distributed from 0 to  J - 1 bits for a codeword 
picked at random. However, the two phases are not indepen- 
dent of each other, and in fact they must satisfy [($J~ t @2) 
t (RG - K t l ) ]  mod J = 0. Despite this dependence, the 
average of (GI t @2) is always J - 1 bits, because the aver- 

age of a sum of random variables equals the sum of the aver- 
ages even when the random variables are correlated. In 
general, (@l t @2) can assume either of two values,except that 
when (RG - K t 1) mod J = 1, it must equalJ  - 1 bits regard- 
less of where the symbol boundaries fall relative to the gap 
edges. When (RG - K t 1) mod J # 1,  the two possible values 
for t @ 2 )  are separated by exactly J bits. Thus, the actual 
lengthening of the gap due to  symbol edge effects can be one 
of two values which differ by one symbol. 

For example, when (RG - K t 1) mod J = 0, the two possi- 
ble values for (@] t G2) are 0 bits and J bits, and when 
(RG - K t 1) mod J =  2, the two possible values are J - 2 bits 
and 2 J  - 2 bits. In the first example, (@l t @2) = 0 with 
probability l/J and (GI t G 2 )  = J with probability 1 - l / J .  In 
the second example, (@] t @2) = J- 2 with probability 1 - 115 
and (@l t &) = 2 J - 2  with probability 1/J. In both cases, the 
average value of (@l t q52) is J - 1 bits. However, the condi- 
tions in the second example will cause slightly poorer concate- 
nated code performance, because the worst-case lengthening of 
the gap is J - 1 bits greater than the average lengthening. On 
the other hand, the performance curves for the optimal data 
rates, which result in (RG - K t 1) mod J = 1, will suffer no 
additional degradation beyond that due to the average length- 
ening of the gaps. 

The additional degradation due to  fluctuations in the length- 
ening of the gaps as a result of symbol edge effects is depicted 
in Fig. 8 as a function of the data rate R .  In this figure the 
extra degradation is measured in terms of the worst-case num- 
ber of gapped symbols per gap relative to the average number. 
The worst-case number of gapped symbols per gap varies 
periodically with the data rate between a minimum value of 
(RG - K t J) /J  gapped symbols and a maximum value of 
(RG - K t J)/J t 1 - 1/J gapped symbols. The period of 
this variation is JIG. For the Voyager-VLA parameters, the 
worst data rates occur nominally at 5 kbits/sec, 10 kbits/sec, 
15 kbits/sec, . . . , and the best data rates occur nominally at 
4.375 kbits/sec, 9.375 kbitslsec, 14.375 kbits/sec, . . . . The 
exact locations of the best data rates or the worst data rates 
are determined under the two-level model not only by the 
precisely measurable value of G, but also by the assumed 
effective shortening of each gap by exactly K - 1 bits due to 
the error correction capability of the convolutional code. 
Since the effective shortening of the gap is a fuzzy quantity, 
the absolute locations of the best or worst data rates cannot be 
determined precisely. Fortunately, the variation between the 
best and worst data rates is relatively small, because it is 
equivalent to  creating less than one additional gapped symbol 
per gap. Other mechanisms causing fluctuations in the number 
of gapped symbols per codeword can cause much larger effects 
on performance. 
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B. Fluctuations Due to Incomplete Gap Cycles 
per Codeword 

A second mechanism that could cause some codewords to 
have an atypically large number of gapped symbols occurs 
when the total span of one block of interleaved codewords en- 
compasses one more gapped section of data than another 
block of interleaved codewords. One block of I interleaved 
codewords, each consisting of N J-bit symbols, spans a con- 
tinuous section of NIJ bits. If NZJ is an exact integer multiple 
of the gap cycle R T ,  than all interleaved codeword sets will 
include gapped symbols from exactly NZJIRT different gap 
cycles. However, if NIJIRT is not an integer, the span of an 
interleaved set of codewords will include a number of com- 
plete gap cycles plus a fraction of a cycle. If the extra frac- 
tional cycle includes the gap, the interleaved codeword set is 
“unlucky” and will suffer degraded performance, because its 
overall fraction of gapped symbols is larger than the nominal 
value of (RG - K + J)/RT. Other interleaved codeword sets 
are “lucky” and avoid the gap altogether in the fractional 
gap cycle, resulting in better performance than the nominal 
prediction. However, the overall unconditional concatenated 
code performance is dominated by the performance of the 
unlucky codeword sets, and so it is important to quantify 
how unlucky they can be. 

Figure 9 illustrates the effects of incomplete gap cycles 
per interleaved codeword block. The upper picture shows the 
case of an unlucky codeword set with a fractional gap cycle 
that includes a gap, and the lower picture shows a lucky 
codeword set whose fractional gap cycle misses the gap. In 
general, an “average” interleaved codeword block includes 
NIJIRT gapped sections of data, but a lucky codeword block 
includes only L NIJIRTJ, while an unlucky codeword block 
includes L NIJIRTJ + 1 ,  where L x -I represents the largest 
integer not exceeding x .  Each gapped section of data includes, 
on the average, (RG - K + J)/J gapped symbols, which are 
distributed over the I interleaved codewords. The difference 
between the lucky codeword blocks and the unlucky ones is 
(RG - K + J)/IJ gapped symbols per codeword per gap. The 
difference between an unlucky codeword block and an aver- 
age one lies linearly (as a function of data rate) between 0 
and (RG - K + J)/IJ gapped symbols per codeword per gap, 
depending on how close NIJIRT is to L NIJIRT-I or to 
L NIJIRTJ + 1. 

Figure 10 plots the peak-to-average concentration of gapped 
symbols due to incomplete gap cycles versus the data rate. The 
peak-to-average concentration of gapped symbols in the un- 
lucky codewords varies between 1 and 1 +RT/NIJ as NIJIRT 
varies between successive integer values. The concentration 
factor returns to 1 periodically at reciprocal data rates sepa- 
rated by TINIJ, but it rises to increasing maximum values 

between its returns to 1. For the Voyager-VLA parameters, 
the maximum value of RTINIJ is less than 117 even at the 
maximum Voyager-Neptune data rate of 21.6 kbitslsec. Thus, 
the overall magnitude of the degradation caused by incom- 
plete gap cycles is limited to about one additional gapped 
symbol per codeword for Voyager. However, the effect of 
incomplete gap cycles can be very severe at higher data rates, 
namely data rates approaching NIJ/T (= 157 kbitslsec) or 
higher. 

C. Fluctuations Due to Gap Cycle/lnterleaving 
Cycle “Resonances” 

A third mechanism that may cause an atypical concentra- 
tion of gapped symbols in some codewords is possible “reso- 
nances” between the gap cycle and the interleaving cycle. 
Even if every interleaved codeword block were to  experience 
exactly the same proportion of gapped and ungapped periods, 
there can be a worst-case codeword within the interleaved 
block which gets more than its share of gaps. In the worst 
conceivable case, one unlucky codeword might receive all of 
the interleaved block’s gapped symbols, while the other Z - 1 
codewords escape with no gapped symbols at all. This would 
result in a worst-case peak-to-average concentration of gapped 
symbols in one unlucky codeword by a factor of I .  

Some potential situations that may cause a concentra- 
tion of gapped symbols in one unlucky codeword are illus- 
trated in Fig. 11. In Fig. ll(a), the average effective gap 
period RG - K + J is small enough to  fit within one symbol 
period J, and the distance between successive gap periods (the 
gap cycle R T )  is exactly an integer multiple of the interleaving 
cycle IJ. In this case, whichever of the I interleaved codewords 
includes the gap in its first symbol will also include all of the 
gaps contained within the entire span (NIJ bits) of the inter- 
leaved block. This unlucky codeword will receive I times its 
average share of gapped symbols, and the remaining Z - 1 code- 
words will have only ungapped symbols. 

Figure 1 l(b) illustrates a slightly different situation in 
which the effective gap period is still small, but the gap cycle 
RT is increased by enough to retard the occurrence of succes- 
sive gaps by one symbol. In this case, successive gaps hit con- 
secutive codewords, and all I codewords within the interleaved 
block receive a proportionate share of gapped symbols. Fig- 
ure 1 l(c) illustrates a case in which the gap cycle RT is made 
slightly longer, such that it retards the occurrence of succes- 
sive gaps by two symbols instead of one. Now, if the inter- 
leaving depth I is an even number, half of the interleaved code- 
words will get all of the gapped symbols, and the unlucky 
codewords will experience a peak-to-average concentration 
factor of 2. On the other hand, if the interleaving depth I is 
odd, the gaps will be distributed over all of the codewords in 
the interleaved block. 
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Figure l l (a)  identifies a series of data rates R which 
cause major resonances between the gap cycle and the inter- 
leaving cycle. Specifically, the major resonances occur for 
values of R satisfying R T  mod IJ= 0. Figure 1 I(c) shows that 
minor resonances can also occur when RT mod ZJ # 0, if 
(RT mod ZJ)/J and Z contain a common integer factor. At the 
major resonances, the peak-to-average concentration factor is 
I ,  while at the minor resonances the concentration factor is 
equal to the common integer factor of Z and (RT mod IJ)/J. 

The preceding conclusions about the magnitude of the 
peak-to-average concentration factor at the major and minor 
resonances are valid only for the types of cases depicted in 
Fig. 1 1, for which the gapped portion RG - K + J of the total 
gap cycle RT is small enough to  fit within one codeword sym- 
bol. Two other possible cases are illustrated in Fig. 12. In 
Fig. 12(a), the effective gap length RG - K t J encompasses 
exactly two symbols, and the data rate is chosen to  cause a 
major resonance between the gap cycle and the interleaving 
cycle (i.e., RT mod ZJ = 0). In this case, the same two code- 
words are always hit by successive gaps, while the remaining 
I - 2 codewords escape the gaps altogether. The resulting peak- 
to-average concentration factor in this case is 1 / 2 .  

Figure 12(b) dustrates a situation in which the effective 
gap length (RG - K t J) is longer than one block of Z inter- 
leaved symbols. The portion of the gap covering an integer 
multiple of IJ bits affects each of the Z codewords equally, 
but the remaining portion of the gap covering a fraction 
of IJ bits afflicts one or more of the I codewords selectively. 
If the data rate is at a major resonance, the same codeword(s) 
will remain unlucky for all the gaps that occur throughout the 
entire span of the interleaved codeword set. The unlucky 
codeword(s) will receive an extra share of gapped symbols 
corresponding to the fractional portion of gapped bits, namely 
(RG - K + J) mod ZJ. An average codeword should receive 
(RG - K t J)/IJ gapped symbols from each gap, but the lucky 
codewords receive only L (RG - K + J) / IJJ ,  while the un- 
lucky codewords receive L (RG - K t J) / IJA + 1 (unless 
(RG - K t J) is exactly an integer multiple of I . .  The result- 
ing peak-to-average concentration of gapped symbols in the 
unlucky codewords varies between 1 and 1 + IJ/(RG - K t J) 
as (RG - K t J) varies between successive integer multiples 
of ZJ. 

The location of the major resonances depends on the length 
of the full gap cycle RT relative to  the interleaving cycle IJ, 
while the magnitude of the performance deterioration at each 
major resonance depends on the effective length (RG - K t J) 
of the gapped portion of a gap cycle relative to the interleaving 
cycle IJ. These two effects are depicted separately in Fig. 13. 
The variation of the peak-to-average concentration of gapped 
symbols is shown as a smooth curve, while the resonance loca- 

tions are shown as sharp lines. The peak-to-average concentra- 
tions depicted by the smooth curve are valid only at or near 
the resonance locations. The resonances themselves are of non- 
zero width, but they are very narrow if the number of symbols 
N per codeword is large. 

Peak-to-average concentration factors of 1.5 and greater are 
common at major resonances within the range of Voyager’s 
data rates. The maximum peak-to-average concentration factor 
varies between 4 and 2 for data rates between 4.375 and 
19.375 kbits/sec. A peak-to-average concentration factor of 
1.5 corresponds to  12 gapped symbols per worst-case code- 
word rather than the average of 8. Figure 3 shows the poten- 
tial for catastrophic performance degradation of a VLA stand- 
alone system when the number of gapped symbols per code- 
word reaches 12 or 16 or higher. Thus, it is important that the 
precise Voyager data rates miss the location of the narrow 
resonances. Fortunately, this is the case. Table 3 lists the data 
rates causing major resonances in the range from 3.75 to  
22.5 kbits/sec. Even though one of the Voyager data rates 
(21.6 kbits/sec) appears to fall perilously close to  a major 
resonance, the unconditional performance evaluations in the 
next section show that the small separation is sufficient to 
avoid resonant degradation. 

VIII. Unconditional Concatenated Code 
Error Probability Curves for the 
Voyager-VLA Parameters 

The number of gapped symbols per codeword, no, was eval- 
uated as a function of the relative phase between the gap cycle 
and the codeword, assuming the Voyager-VLA parameter 
values listed in Table 2. This evaluation simultaneously takes 
into account all of the types of fluctuations identified in the 
previous section. It was found that the Voyager data rates are 
all nonresonant, in the sense that the worst-case value of no 
was 9 or 10 and not 12, 16, or higher. 

The overall unconditional concatenated code bit error rate 
is obtained by averaging the bit error rate in Eq. (7), 

where E {. } represents an average over the possible values of 
no. Unconditional concatenated code bit error rates calculated 
from Eq. (10) are plotted in Figs. 14 through 17 for the same 
four VU-Goldstone array ratios considered inFigs. 3 through 6. 

The concatenated code performance curves in Figs. 14 
through 17 are virtually identical for the three Voyager data 
rates shown, R = 7.2 kbits/sec, 14.4 kbits/sec, and 21.6 kbits/ 
sec. Performance is very slightly improved at the higher rates. 
This negligible difference is attributable to  the net effective 
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lengthening of the gap portion of the gap cycle by J - K = 1 
bit. This net lengthening constitutes a larger fraction of the 
total gap cycle at lower data rates than at higher rates, and 
hence the gap is predicted to affect the lower data rates 
slightly more adversely. However, as pointed out earlier, the 
net effective lengthening of the gap is the result of two com- 
pensating effects which almost cancel each other. The convo- 
lutional code’s error correction capability makes the gaps look 
shorter at the low data rates, while edge effects due to entire 
Reed-Solomon symbols getting wiped out by one erroneous 
bit make the gaps look shorter at the high data rates. The 
model for both of these effects is fuzzy enough that the pre- 
dicted tiny performance improvement with increasing data 
rate is not significant. A more appropriate conclusion is that 
the predicted concatenated code performance is virtually inde- 
pendent of the Voyager data rate over the range R = 7.2 to  
21.6 kbitslsec. 

The performance curves in Figs. 14 through 17 are essen- 
tially identical to the no = 9 conditional error rate curves in 
Figs. 3 through 6 .  This indicates that the unconditional error 
rate is almost completely determined by the error rate for 
codewords with the worst-case number of gapped symbols. At 
a constant performance level of bit error rate, the net 
effect of the VLA gaps is to  require 0.5 dB to 0.6 dB more 
signal-to-noise ratio for the VLA stand-alone system relative to  
an ungapped system. The net cost of the gaps when the VLA 
is arrayed equally with Goldstone (3-dB gaps) is 0.3 dB to 
0.4 dB. When the VLA’s contribution to  the array is about 
twice Goldstone’s (5-dB gaps), the net cost of the gaps is 
almost the same as for the VLA stand-alone system, 0.5 dB. 
When Goldstone’s contribution is about twice the VLA’s 
(1.5-dB gaps), the net cost of the gaps shrinks to 0.1 dB to 
0.2 dB. 

The modest amount of deterioration in the concatenated 
code performance due to the VLA gaps is a consequence of 
the reserve error correction capability of the Reed-Solomon 
code relative to the average number of gapped symbols, cou- 
pled with the fortuitous choice of nonresonant data rates for 
Voyager. A remarkable example of catastrophic performance 
degradation due to  a resonant data rate is shown in Fig. 18. 
The resonant data rate, R = 2 1 SO4 kbits/sec, differs from one 
of the important Voyager rates by less than O S % ,  and yet this 
case suffers an additional performance degradation of around 
2 dB for the VLA stand-alone system. The explanation is that 
21 SO4 kbits/sec is a resonant data rate with a worst-case num- 
ber of gapped symbols per codeword equal to  16 (see Table 3), 
which exhausts the error correction capacity of the Reed- 
Solomon code. 

The effects of a resonant data rate are not so pronounced 
when the VLA is arrayed with Goldstone. Figure 19 shows 

concatenated code performance for the same resonant data 
rate considered in Fig. 18, but for the case of an equal VLA- 
Goldstone array ratio (3-dB gaps). The resonant data rate 
performance is only 0.1 dB to 0.2 dB worse than the perfor- 
mance for the nonresonant Voyager data rate at a required bit 
error probability of In fact, the concatenated code’s 
performance at high bit error rates is slightly better 
at the resonant rate than at the nonresonant rate. The reason 
for the dramatically improved performance is that, even 
though the Viterbi decoder’s error rate during the 3-dB gaps is 
truly bad, it does not decode completely random bits as it 
does when the gaps are totally devoid of received data. If the 
Viterbi decoder manages to  decode a few gapped symbols 
correctly, every correctly decoded gapped symbol adds one 
symbol’s worth of reserve correction capacity to a Reed- 
Solomon decoder that would otherwise be operating with 
essentially no reserve capacity at all. 

The main lesson to be drawn from Figs. 14 through 19 is 
that the Voyager data rates and the VLA gap cycle parameters 
must be very accurately known and precisely controlled in 
order to avoid a disastrous resonance that would ruin the 
performance of a VLA stand-alone system. If this can be done, 
the overall concatenated code performance degradation due 
to the VLA gaps can be limited to about 0.5 to 0.6 dB. When 
the VLA and Goldstone are arrayed in equal ratio, the nominal 
degradation is reduced to 0.3 to 0.4 dB, but, just as signifi- 
cantly, the extra degradation at a resonant data rate is only a 
few more tenths of a dB. Thus, the necessity to  avoid a reso- 
nant data rate is not quite so critical if the VLA is arrayed 
with Goldstone. 

IX. Summary 
Voyager’s Reed-Solomon outer code has sufficient error 

correction capacity to withstand the average number of 
erroneous symbols caused by the VLA data gaps. Of course, 
the code’s reserve capacity for correcting ordinary random 
errors not caused by the gaps is diminished and the overall 
concatenated code performance is slightly degraded relative 
to  that of an ungapped receiving system. 

The periodicity of the VLA gap cycle tends to distribute 
an average number of gapped symbols to  every Reed-Solomon 
codeword. However, several mechanisms were identified which 
can cause the actual number of gapped symbols to deviate 
from its benign average value for some unlucky codewords. 
These fluctuations are important because the overall perfor- 
mance of the concatenated code is dominated by its perfor- 
mance for the unluckiest codewords, which receive the worst- 
case number of gapped symbols. The mechanism causing the 
most serious fluctuations within the range of the Voyager- 
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VLA parameters is resonances between the VLA gap cycle 
and the Reed-Solomon codeword interleaving cycle. At many 
resonances within the range of Voyager’s data rates, the num- 
ber of gapped symbols included in unlucky codewords is 1.5 
to 4 times higher than the average number. The performance 

especially for a VLA stand-alone system, as seen in Fig. 18. 
, degradation at these resonant data rates can be catastrophic, 

Fortunately, the resonances are very narrow and none of the 
actual Voyager data rates falls disastrously near a resonant 
rate. However, the existence of these catastrophic resonant 
rates inside the range of the actual Voyager data rates under- 
scores the importance of accurately knowing and precisely 
controlling all of the relevant code parameters, gap cycle 
parameters, and data rates for the Voyager-VLA system. 
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Table 1. The two-level model for the Viterbi decoder output statistics 

VLAGoldstone array VLA stand-alone system 

Inside Outside Inside Outside 
the gaps the gaps the gaps the gaps 

PO p1 Po = 112 p1 Bit error rate 
Symbol error rate 

Signal-to-noise ratio P Eb/No * Eb/NO 0 EblNO 

"1 no = 1 "0 "1 

*Values of the array ratio considered in this article are: 10 loglo p = 1.5 dB, 3 dB, 5 dB (as well as 
p = 0 for the VLA stand-alone case). 

Table 2. Code parameters, gap cycle parameters, and data rates 

General Case Voyager-VLA Case 

Convolutional code parameters 
Constraint length 
Memory length 
Code rate 

Reed-Solomon code parameters 
Symbol size 
Codeword sue 
Error correction capability 
Code rate 
Interleaving depth 

Gap cycle parameters 
Gap length 
Total gap cycle length 

Data rate 
(Viterbi decoder bit rate) 

K 
K - 1  

r 

J 
N 
E 

1 - 2E/N 
Z 

G 
T 

R 

7 
6 

112 

8 
25 5 
16 

2231255 
4 

1.6 msec 
5/96 sec 

21.6 kbitslsec 
14.4 kbitslsec 
7.2 kbitslsec 
3.6 kbitslsec 

Table 3. Data rates causing major resonances between the gap 
cycle and the interleaving cycle 

Resonant data rate 
(kbits/sec) 

Worst-case number of 
gapped symbols 
per codeword 

4.3008 
4.9152 
5.5296 
6.1440 
6.7584 
7.3728 
7.9872 
8.6016 
9.2160 
9.8304 

10.4448 
11.0592 
11.6736 
12.2880 
12.9024 
13.5168 
14.1312 
14.7456 
15.3600 
15.9744 
16.5888 
17.2032 
17.8 176 
18.4320 
19.0464 
19.6608 
20.2752 
20.8896 
21 s o 4 0  
22.1 184 

37 
32 
29 
26 
24 
22 
20 
19 
17 
16 
15 
15 
14 
13 
13 
12 
12 
11 
11 
10 
10 
10 
9 
9 

18 
16 
16 
16 
16 
16 
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(a) ONE-LEVEL AVERAGE ERROR RATE MODEL (121, 131) 

c INSIDE GAPS 
VlTERBl DECODER 
SIMULATION WITH AVERAGE ERROR RATE 
GAPPED DATA OUTSIDE GAPS - 

DECODER ANALYTICAL 
CALCULATIONS 
(ONE-LEVEL MODEL) GAPPED DATA 

REED-SOLOMON 

~ ~ ~ ~ ~ ~ ~ . ( ~ ~ ~ ' c A L  
(TWO-LEVEL MODEL) 

(b) TWO-LEVEL AVERAGE ERROR RATE MODEL (PRESENT ARTICLE) 

(c) SIMULATED ERROR STREAM MODEL (NOT PRACTICAL) 

=lMULATED REED-SOLOMON 
nnnn CTREAM 

L J I I 

Fig. 1. Various analytical approaches to modeling concatenated 
coding with gapped data. 
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Fig. 2. Viterbi decoder output error probabilities for ungapped 
system (taken from [SI, Fig. 3-1). 
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Fig. 3. Conditional concatenated performance for VLA stand-alone 
system as a function of n o  = number of gapped symbols per 
codeword. 
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Fig. 4. Conditional concatenated code performance for VLA 
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number of gapped symbols per codeword. 
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Fig. 14. Unconditional concatenated code performance at 
Voyager-Neptune data rates for VLA stand-alone system. 
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Fig. 15. Unconditional concatenated code performance at 
Voyager-Neptune data rates for VLA arrayed unequally with 
Goldstone (5-dB gaps). 
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Fig. 16. Unconditional concatenated code performance at 
Voyager-Neptune data rates for VLA arrayed equally with Goldstone 
( 3 4 6  gaps). 

Fig. 17. Unconditional concatenated code performance at 
Voyager-Neptune data rates for VLA arrayed unequally with 
Goldstone (1.5-dB gaps). 

130 



I I I 1 I I I 

GAPPED DATA ' \\ 21.504 kbitdsec 

-m -m -m INSIDE GAPS -- 
CONCATENATED SYSTEM, EdNo, dB 

Fig. 18. Comparison of unconditional concatenated code per- 
formance at a Voyager-Neptune data rate and a nearby resonant 
data rate for VLA stand-alone svstem. 
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Fig. 19. Comparison of unconditional concatenated code per- 
formance at a Voyager-Neptune data rate and a nearby resonant 
data rate for VLA arrayed equally with Goldstone (346 gaps). 
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Appendix 

Corroboration of the Two-Level Model 

The two-level model for the Viterbi decoder output statis- 
tics is an ad hoc model that was chosen for simplicity. It is 
relatively easy to  analyze, and it affords easy separability of 
the analysis into a conditional evaluation of code performance 
and a computation of the gap cycle’s effect on the symbols in 
any given codeword. At the same time, it allows the gapped 
and ungapped portions of the gap cycle to be treated differ- 
ently, not just characterized by overall cycle averages as in the 
even simpler one-level model. 

The validity of the two-level model for the purposes of cal- 
culating concatenated code performance could be completely 
confirmed only by end-to-end tests or simulations of the 
entire concatenated code. Such simulations are impractical 
and were not performed. However, a partial corroboration of 
the model’s accuracy can be obtained by comparing the aver- 
age of the gapped and ungapped Viterbi decoder error rates 
predicted by the two-level models to the overall average 
Viterbi decoder error rates obtained from simulations of the 
Viterbi decoder operating over many VLA gap cycles. If the 
two-level model is accurate, the following equation should 
hold: 

R G - K + 1  R G - K + l  
” R T  ( l -  R T  

Here, p o  and p 1  are the gapped and ungapped bit error proba- 
bilities defined in Table 1 and Fig. 2 and used in Eqs. (4) and 
(5), and p is the simulated bit error rate (averaged over many 
gap cycles) used in Eq. (1) of this article and plotted in Figs. 3 
and 4 of [ 2 ] .  

Figures A-1 and A-2 compare the left sides and right sides 
of the purported Eq. (A-1) for the VLA stand-alone case 
and for the VLA arrayed equally with Goldstone.’ Fairly good 
agreement is obtained. Even the substantial variation of per- 
formance with data rate is somewhat accurately predicted by 
the two-level model. The agreement is best for the VLA 
stand-alone case. The gap conditions in this case are more 
nearly equal to the assumption of zero signal-to-noise ratio 
inside the gaps and infinite signal-to-noise ratio outside the 
gaps, from which the argument for effectively shortening the 
gaps by K - 1 bits was derived. 

A second form of justification for the two-level model is 
obtained by examining its validity at the end points. It was 
already stated in Section IV that the model is exactly correct 
in the extreme limit of zero signal-to-noise ratio inside the gaps 
and infinite signal-to-noise ratio outside the gaps. These ex- 
treme limits represent the maximum possible difference 
between the characteristics of the gapped and ungapped por- 
tions of the gap cycle. The opposite extreme occurs as the 
difference between the gapped zone and the ungapped zone 
goes to zero and the two signal-to-noise ratios become equal. 
The two-level model is obviously exactly correct in this ex- 
treme limit also, because Eqs. ( 2 )  through (7) reduce to 
Eq. (1) when p o  = p1 = p and no = n ,  = n. These end-point 
arguments do not directly confirm the validity of the two-level 
model in the intermediate regions, but nonetheless they inspire 
confidence that it should not be too far wrong. 

lFor comparison with (21, VLA gaps are assumed to be 1 msec instead 
of 1.6 msec for the curves in Figs. A-1 and A-2. 
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Fig. A-1. Comparison of Viterbi decoder performance predicted by 
two-level model and by detailed simulation for VLA stand-alone 
system. (Note: For comparison with [2], VLA gaps are assumed to be 
1 msec instead of 1.6 msec for these curves.) 
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Fig. A-2. Comparison of Viterbi decoder performance predicted by 
two-level model and by detailed simulation for VLA arrayed equally 
with Goldstone (3-dB gaps). (Note: For comparison with [2], VLA 
gaps are assumed to be 1 msec instead of 1.6 msec for these 
curves.) 
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